=begin =Formulas for Trigonometric Functions 三角関数公式 ==一般的な関係式 *sin(-x) = -sin(x) *cos(-x) = cos(x) *sin(π/2 -x) = cos(x) *sin(π-x) = sin(x) *cos(π/2 -x) = sin(x) *cos(π-x) = -cos(x) *sin(π/2 +x) = cos(x) *sin(π+x) = -sin(x) *cos(π/2 +x) = -sin(x) *cos(π+x) = -cos(x) *sin(x)2 + cos(x)2 = 1 ==加法定理 *sin(x+y) = sin(x)cos(y) + cos(x)sin(y) *cos(x+y) = cos(x)cos(y) - sin(x)sin(y) *sin(x-y) = sin(x)cos(y) - cos(x)sin(y) *cos(x-y) = cos(x)cos(y) + sin(x)sin(y) ==積和公式 *2sin(x)cos(y) = sin(x+y) + sin(x-y) *2cos(x)sin(y) = sin(x+y) - sin(x-y) *2cos(x)cos(y) = cos(x+y) + cos(x-y) *2sin(x)sin(y) = -cos(x+y) + cos(x-y) ==和積公式 *sin(x) + sin(y) = 2sin( (x+y)/2 )・ cos( (x-y)/2 ) *sin(x) - sin(y) = 2cos( (x+y)/2 )・ sin( (x-y)/2 ) *cos(x) + cos(y) = 2cos( (x+y)/2 )・ cos( (x-y)/2 ) *cos(x) - cos(y) = -2sin( (x+y)/2 )・ sin( (x-y)/2 ) ==倍角公式 *sin(2x) = 2sin(x)cos(x) *cos(2x) = cos(x)2 - sin(x)2 = 2cos(x)2 - 1 = 1 - 2sin(x)2 ==半角公式 *sin(x/2)2 = ( 1-cos(x) )/2 *cos(x/2)2 = ( 1+cos(x) )/2 ==複素 *ei x = cos(x) + i sin(x) *ei (x+y) = ei x ei y ==リンク この式集は ((<三角関数資料|URL:http://hp.vector.co.jp/authors/VA003604/sincos.htm>)) を参考に整理した(殆どそのままである)。感謝 *三角関数資料 URL:http://hp.vector.co.jp/authors/VA003604/sincos.htm ==letters • π · ± ⋅ ² ³ × ÷ ℑ ℘ ℜ ℵ ∞ =end =begin ==rdソース (()) ruby -pe 'gsub("<","<").gsub!(">",">")' =end